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Highlights: 

• Comparison of discrete-time mixed-integer linear programming (MILP), continuous-time 

MILP, and constraint programming (CP) models for single- and multi- crane scheduling in 

tankhouse systems. 

• Introduction of novel machine-based decomposition strategy for constraint programming 

(CP) models. 

• Real-world case studies demonstrate the effectiveness of the proposed solution strategy. 

• The quantitative results confirm the performance of the proposed algorithm on industrial-

scale problems. 

Abstract 

With the development of industry and automation, optimizing crane operations becomes 

increasingly important for improving productivity and reducing costs in manufacturing systems. 

In this paper, we address a crane scheduling problem in tankhouse systems, where operations are 

tightly integrated with the production process and the resource sharing is frequent. We propose 

discrete-time mixed-integer linear programming (MILP), continuous-time MILP, and constraint 

programming (CP) models to tackle this problem. It is found that the CP model has the best 

performance considering both single- and multi- crane conditions. To efficiently solve real-world 

problems, we propose a machine-based decomposition strategy with the CP framework, which 

solves 128 tasks in 34 seconds over 24 iterations. The results demonstrate the effectiveness of the 

proposed approach in handling large-scale, complex scheduling problems with high computational 

efficiency. 
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1. Introduction 

Cranes play an important role in lifting, delivery and transfer of goods in industrial and 

construction operations. With the development of industry and automation, cranes are widely used 

in construction, ports, and warehouse management. An efficient crane scheduling system can 

effectively save labor, electricity, time, and costs, as well as improve the quality of the product. In 

construction, where vertical lifting is a primary focus, effective crane scheduling optimizes 

automation, thereby enhancing both safety and operational efficiency (Zhu et al., 2023). For quay 

crane operations, which involve container transfers between vessels and land terminals, optimal 

scheduling improves overall performance, while balancing operational efficiency and energy 

consumption (Tan et al., 2021). In yard operations, where cranes handle container movements 

between storage blocks and input/output (I/O) points, realistic scheduling reduces weighted costs 

involving container tardiness, I/O point congestion, and crane travel time (Wang et al., 2025). In 

warehouse management, where cranes facilitate internal inventory movement, strategic scheduling 

streamlines logistic processes and reduces inventory holding costs (Peng et al., 2021). In this paper, 

our focus is on optimal crane scheduling in a manufacturing environment, with particular emphasis 

on tankhouse systems. 

In manufacturing, cranes are responsible for handling materials across various stages of the 

production process. Different from common quay and yard cranes, crane operations in 

manufacturing feature tighter integration with production processes, stricter timing constraints, 

and more frequent resource sharing. One typical example is the steel-making process, where crane 

operations serve as a critical logistical component in the pre-steelmaking stage. Crane efficiency 

directly impacts converter utilization, production output, and overall operational costs (Xie et al., 

2023). Similarly, cranes are also widely used for copper refining processes in electrolyte 

purification plants. The process, shown in Fig.1, involves casting anodes, transporting them to 

electrolysis cells for purification, and then returning used anodes to the converting stage for 

cooling and reuse, completing a closed loop material flow (Siitari, 2022). 

 

Fig.1. Copper refining processes. 

Fig.2 shows the typical crane layout in a tankhouse, where the cranes hang and move along the 

track. The cranes must complete tasks at different locations, while ensuring non-intersecting track 

paths. For example, in Fig.2, track 2 should always be on the north of track 1. If crane 1 is assigned 
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a task further north, then tracks 2 - 4 should shift northward to leave space for track 1. The whole 

scheduling process is a dynamic process, requiring continuous adjustments to crane positions and 

task assignments to prevent conflicts, and ensure smooth operation across multiple tracks. 

 

Fig.2. Crane movement in factories. 

Such a crane scheduling problem is complex since it requires calculating a space-time trajectory 

for each crane, while also considering the order and timing between cranes (Aron et al., 2010). To 

solve the problem, the most common solution techniques include mathematical optimization 

models, simulation, evolutionary heuristics, and heuristics (Naeem et al., 2023). Each approach 

offers advantages and trade-offs in terms of scalability, accuracy, and data requirements. One 

approach to tackle such problems is to develop a tool relying on visualization of the process and 

graphically simulate the behaviors of the systems. This approach is effective in helping to identify 

unexpected problems and potential risks before construction (Kang Shih-Chung et al., 2009).  

Another common approach is to use deep learning techniques. In this case, the advantage is that 

one can train the model with large-scale crane transportation data, which is more objective and 

sometimes more reliable than human experience (Feng et al., 2022). However, the difficulty for 

this method also lies in gaining such largescale data, since in practice there is often a lack of 

historical data of good quality. 

Heuristic methods in crane scheduling problems improve efficiency to find solutions (Bierwirth 

and Meisel, 2009). They work well with models of large scale. However, compared to 

mathematical optimization methods, they are more likely to give suboptimal solutions. 

Mixed-integer linear programing (MILP) models are useful in scheduling problems since they 

handles complex constraints with precision to provide optimal solutions (Meng et al., 2023). 

Several techniques have been proposed to solve MILP models more efficiently, including branch-

and-cut algorithm (Moccia et al., 2006), Benders decomposition (Emde, 2017), and dynamic 

programming (Peterson et al., 2014). Furthermore, this approach does not rely heavily on historical 

data, and therefore is suitable for a wide range of real-life applications. 

The structure of this paper is organized as follows. Section 1 provides an introduction and 

background on crane scheduling problems. Section 2 presents a literature review on related work 

and includes description of similar problems and common methodology. Section 3 defines the 
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problem and offers a general problem statement. Section 4 gives a motivating example of the 

tankhouse layout and operations in copper purification process. Section 5 describes formulations 

for discrete-time MILP, continuous-time MILP, and constraint programming (CP) models for the 

given problems. Section 6 proposes a decomposition strategy as a more efficient approach to solve 

the problem. Section 7 shows the results of the proposed models on small, medium, and real-world 

examples. Section 8 summarizes our work in conclusions, and discusses future work.  

2. Literature review 

Crane scheduling has long been a critical problem across industries, focusing on problems such as 

quay crane (QC) scheduling, yard crane (YC) scheduling, and yard truck (YT) dispatching (H. -P. 

Hsu et al., 2022). Common objective functions include minimizing the number of container moves 

and internal vehicle travel distances, the task completion time, the due date satisfaction, and yard 

space utilization. Factors such as equipment utilization, environmental concerns, and cost have 

received relatively less attention (Kizilay and Eliiyi, 2021).  

Early studies have focused on port operations and formulated models under simplified conditions. 

Daganzo (1989) proposes a mixed-integer linear programming (MILP) approach to crane 

scheduling at ports, introducing a simple static model as a foundation for dynamic cases with berth 

limitations, developing scheduling principles that minimize ship delay and crane idle time. 

Building on this foundation, and due to the operational nature of crane scheduling problems, 

discrete-time models have been developed. Li et al. (2009) introduce discrete-time formulations 

for yard crane scheduling, where heuristics and a rolling-horizon algorithm significantly reduce 

model complexity and computational time. Later, Agra and Oliveira (2018) have advanced discrete 

modeling further by proposing a time–space discretized reformulation for the integrated berth and 

quay crane assignment problem, avoiding big-M constraints and facilitating exact solution 

methods through a branch-and-cut algorithm supported by rolling-horizon heuristics. As research 

has progressed, continuous-time models have been introduced to make models more efficient. Li 

et al. (2015) develop a continuous-time model combined with a rolling-horizon algorithm, 

significantly reducing model size and reducing computational time from days to seconds, with a 

higher solution quality than existing heuristics. However, the model relies on binary variables to 

determine time overlap and crane conflicts, which simplifies collision detection of the cranes, but 

fails to capture dynamics. To better handle such spatial and temporal interactions, constraint 

programming (CP) provides a more expressive framework that supports flexible modeling of 

sequencing, resource sharing, and mutual exclusion. Qin et al. (2020) propose a hybrid MIP/CP 

solution strategy that effectively solves large-scale instances involving up to 1,000 containers, 6 

quay cranes, 36 yard trucks, and 15 yard cranes in 2 minutes with an optimality gap of less than 

3.31%. This strategy takes advantage of the strengths of the branch-and-cut (B&C) algorithm for 

MIP and the branch-and-price (B&P) algorithm for CP. However, the model makes unidirectional 

assumptions, which may be suitable for port operations with linear container flow, but not for 

manufacturing environments where cranes often need to shuttle back and forth between stations. 
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The unidirectional  limitation is then solved by a new CP model despite the exponential increase 

in search space (Unsal and Oguz, 2013). 

While most existing studies focus on crane scheduling in port and yard operations, we shift our 

attention to manufacturing systems, where crane coordination introduces different scheduling 

requirements due to the complexity of material flows, station layouts, and dynamic task 

requirements. In response to these distinct requirements, several studies have explored crane 

scheduling in manufacturing environments. Tanizaki et al. (2006) present a model with crane 

interference and applied a heuristic method on an enumeration tree for crane assignment, based on 

depth-first and width-first search. The method first determines task sequences heuristically based 

on the latest due time before assigning cranes, which limits its applicability in scenarios where 

task precedence is not clearly defined. Liu et al. (2023) develop a low-carbon scheduling model 

for flexible manufacturing and crane transportation, and demonstrate that the proposed differential 

evolution (DE) with firefly algorithm (FA) and a collaborative state optimization strategy (CSOS) 

reduces machining and transportation energy consumption by 25.17% and 34.52%, respectively. 

The limitation of this study is that it considers only a single crane for operations, without 

accounting for the interactions and potential conflicts among multiple cranes in a shared workspace. 

By narrowing the focus to tankhouse systems, few studies have addressed crane scheduling, with 

most research focusing on process operations (Fuke et al., 2025) or electrochemistry (S. 

Grobbelaar et al., 2023). 

In this paper, we focus on crane scheduling problems for tankhouse systems. We first compare the 

performance of discrete-time MILP, continuous-time MILP, and constraint programming (CP) 

models for single and multi- crane scheduling problems. We then apply a machine-based 

decomposition strategy with CP models for large-scale problems. Our findings complement 

existing research by providing a comprehensive comparison of modeling approaches under 

tankhouse-specific constraints. Specifically, we demonstrate the effectiveness of decomposition in 

enhancing the scalability of constraint programming (CP) models for large-scale, interference-

constrained, and non-unidirectional scheduling. 

3. Problem statement and motivation 

3.1. The copper purification process in a tankhouse 

The primary goal of the smelting process for copper production is to produce high-purity copper 

anodes. The anodes are mainly composed of copper. However, there are small amounts of 

impurities. Therefore, these anodes need to go through an electrolysis process at the tankhouse to 

refine copper and recover a solution with all other elements that are not copper. During the 

electrolysis process, copper ions are diluted and attached to a steel sheet that is used as the cathode 

(Fig.3). This copper purification process is conducted by cranes that operate on individual cells.  
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Fig.3. Schematic diagram of a cell. 

3.2. The tankhouse crane scheduling problem 

In the crane scheduling problem, the following is assumed to be given: 1) the tankhouse layout 

divided into several blocks, 2) several cranes that are responsible for pickup, transfer, and delivery 

of objects, 3) a set of tasks that need to be completed, and 4) several machines that process objects. 

Additionally, there are some unique requirements on the operations for the copper purification 

process: 

1) Cells provide the locations for the placement of copper anodes and metal sheets. During the 

electrolysis process, there are several crops for the same solution. Therefore, for each cell, 

there is a sequence of tasks in an operation cycle, for example, cathode operations and anode 

operations. 

2) Machines are shared across the block and cannot exceed their maximum processing capacity. 

3) Cranes can operate on either the same cell or on different cells. However, this should not 

happen at the same time. Although there is a certain sequence of tasks in one cell, tasks in 

different cells have no sequencing limitations. For example, after finishing cell one task one, 

the crane needs to decide whether the next step should be cell one task two or cell two task 

one. 

4) For each block, one single crane or multiple cranes could be available. Cranes are non-

unidirectional and move between cells and machines, transferring cathodes and anodes. Cranes 

in the same block share a common track, and require a safety distance to avoid interference. 

Cranes across different blocks work independently. 

The goal of the scheduling problem is to allocate cranes efficiently to maximize productivity. This 

means ensuring the machines are working at their full capacities and do not have to wait. 

Furthermore, the cell is inactive if the crane is operating on it. Since cells in one block share the 

same electric circuit, this means that the electricity in the whole block should be shut down, which 

leads to stopping the electrolysis process for multiple cells. This might result in a worse result. 

Therefore, the objective is to minimize the time in which cells are inactive, which is equivalent to 

the completion time for all cells. 
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4. Motivating examples 

4.1. Tankhouse layout 

To illustrate the tankhouse system, we provide a small illustrative example (Fig.4). The system 

contains 4 blocks, some with single-crane and others with multi-crane configurations. All cranes 

transport anodes and steel sheets between cells and a shared machine. Given that the machine has 

only one slot, uses across blocks can improve efficiency. For example, while the cell in block 1 is 

using the machine, cranes in blocks 2 – 4 can perform other subtasks that do not require the 

machine. Our goal is to optimize the crane movement and find the sequence of tasks so that the 

machines are used to the fullest extent and the operation time is minimized. 

 

Fig.4. An illustrative example of the tankhouse layout. 

4.2. Operations in copper purification process 

Before presenting the modeling of crane scheduling problems, we provide an illustrative 

description of the detailed operations in copper purification process. Each cell uses a steel sheet 

and a copper. As the electrolysis process begins, copper ions from the anode dissolve into the 

electrolyte and are deposited onto the steel sheet, gradually forming the cathode-high-purity copper 

on the steel sheet. There are mainly two kinds of operations during this process, the cathode 

operations (Fig.5) and the anode operations (Fig.6). These two kinds of operations are both 

conducted by cranes.  

 

Fig.5. The cathode operations for one cell.     
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Fig.6. The anode operations for one cell 

The cathode operations only involve cathode exchange, which consists of two steps. The first step 

is to take the steel sheet with pure copper from the cell to the stripping machine. The second step 

is to bring the new steel sheet from the stripping machine back to the cell.  

The anode operations are more complex, involving four steps in the following way. The electricity 

in the whole group with the operated cell is shut down. First, the steel sheet with cathode is 

transported to the stripping machine, and the spent copper anode is transported to the anode 

machine. Then after both electrodes are removed, the cell is cleaned before new electrodes are 

inserted. Finally, the new copper anode and the new steel sheet are transported to the cell from the 

anode machine and the stripping machine correspondingly. The electricity in the section is turned 

on again only when the operations for every cell in the group are finished. Furthermore, due to the 

specific structure of the cell, the cathode physically obstructs the anode. Therefore, the cathode 

must be removed before the anode, and the anode must be inserted before the cathode.  

For each cell, cathode operations and anode operations are carried out at regular intervals, with at 

most one type of operation performed per day. To better illustrate the process, Fig.7 depicts the 

crane movements during operations. The cathode tasks involve steps 1 and 4, while anode tasks 

include all four steps. 

 

Fig.7. Crane movements for cathode and anode operations. 
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5. Model formulation 

5.1. Outline of modeling approaches 

In this section, we introduce the mathematical formulations of the crane scheduling problem. We 

explore different ways of modeling the problem, and indicate advantages and limitations in them. 

We first present a full-size discrete-time mixed-integer linear programming (MILP) model with all 

the necessary constraints for cranes, tasks, and machines. We then reformulate the problem as the 

continuous-time MILP model to reduce the complexity of the model. However, in this case, we 

lose the ability to model the cranes with multiple cranes due to the failure in avoiding crane 

interferences. To overcome this, we combine both models into a hybrid model. Due to the 

characteristics of the hybrid model, particularly its large number of discrete variables, which lead 

to a weak LP relaxation, we finally propose a constraint programming approach to model the 

underlying process. This approach is well-suited for handling integer variables and complex 

logical constraints. 

We make the following assumptions according to the features of tankhouse operations for the 

copper purification process. 

1) Operations in each block start at the same time. 

2) All cells have the same properties and sequence of tasks. In each cell, the next task can 

only start after the previous task is completed.  

3) The pickup and delivery positions for tasks in cells are known. 

4) Cells in the same block share the same electrical circuit. Therefore, the operations on one 

cell will result in the electrical shutdown of the entire block, which means all cells in this 

block will be inactive that would affect the electrolysis process for the cells. Under this 

condition, minimizing the sum of completion times for all blocks becomes a meaningful 

objective. 

5) All cranes are the same, which means that they have the same velocity, pickup time, and 

delivery time. The velocity equals the smallest time step in the model. 

6) The time that cranes move vertically along the track can be ignored compared to the time 

for cranes to move horizontally between cells and machines. 

7) Each machine can only deal with one task at a time. 

8) If the machine is in use, the crane should wait above until the machine becomes available. 

9) The machine processes the object when the crane delivers it without any waiting time. 

10)  There is no human factor, meaning that all cleaning times are constant. 

We define the following parameters and sets, 

𝑇: The set of discrete time points in the time horizon, where the time horizon represents the upper 

bound on the total time required to complete all tasks. 

𝑡, 𝑡′, 𝑡′′: The index of discrete time, 𝑡, 𝑡′, 𝑡′′ ∈ 𝑇. 
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𝑁: The set of all independent blocks in the tankhouse. 

𝑛: The index of blocks, 𝑛 ∈ 𝑁. 

𝐶𝑛: The set of cranes in block 𝑛. 

𝑐, 𝑐′: The index of cranes, 𝑐, 𝑐′ ∈ 𝐶𝑛. 

𝐽𝑛: The set of cells in block 𝑛. 

𝑗, 𝑗′: The index of cells, 𝑗, 𝑗′ ∈ 𝐽𝑛. 

𝐾: The set of all steps for one cell. 

𝑘, 𝑘′: The index of steps for one cell,  𝑘, 𝑘′ ∈ 𝐾. 

𝐼𝑛: The set of possible positions for cranes in block 𝑛. 

𝑖: The index of crane positions. 

𝑃𝑜𝑠𝑝𝑛,𝑘: Pickup position of step 𝑘 for cells in block 𝑛. 

𝑃𝑜𝑠𝑑𝑛,𝑘: Delivery position of step 𝑘 for cells in block 𝑛. 

𝑃𝑜𝑠𝐼𝑐: Initial position for crane 𝑐. 

𝐿𝑠𝑎𝑓𝑒𝑡𝑦: Safety distance between cranes. 

𝑄: The set of all shared machines. 

𝑞: The index of shared machines, 𝑞 ∈ 𝑄. 

𝑘𝑞: A certain step in one cell that utilizes the machine 𝑞,  𝑘𝑞 ∈ 𝐾. 

𝑄𝑃𝑞: Processing time of machine 𝑞 for one task. 

𝑃: Pickup duration. 

𝐷: Delivery duration. 

𝑀: A large value for big-M constraints. 

Next we define the binary variables, 

𝑦𝑐,𝑗,𝑘,𝑡: If crane 𝑐 picks up cell 𝑗 step 𝑘 at time 𝑡. 

𝑧𝑐,𝑗,𝑘,𝑡: If crane 𝑐 delivers cell 𝑗 step 𝑘 at time 𝑡. 

𝑥𝑐,𝑖,𝑡 : If crane 𝑐 locates at position 𝑖 at time 𝑡. 

𝑤𝑞,𝑗,𝑗′ : If cell 𝑗 uses the machine 𝑞 before cell 𝑗′. 
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Finally, we define the automative decision variables, 

𝑇𝐶: Total completion time for all blocks. 

𝑇𝑛: The completion time for all cells in block 𝑛. 

5.2. Discrete-time MILP 

In this model, we need to determine the following decision variables: 1) the movement paths and 

task assignments for cranes in each block, 2) the sequences of tasks between cells, 3) the allocation 

of the use of shared machines, and 4) the minimum completion for all cells. Fig.8 shows a 

schematic representation of the discrete-time MILP model, with detailed equations explained 

below. 

 

Fig.8. Discrete-time MILP model schematic diagrams. 

Equation (1) corresponds to the objective function. Our goal is to minimize the total completion 

time 𝑇𝐶, which equals the sum of completion time in each block as stated in constraint (2). The 

completion time for each block should be at least equal to the sum of the times needed to start the 

final delivery operation and the time required for the delivery itself as stated in constraint (3), 

which is activated if crane 𝑐 delivers all tasks for cell 𝑗 step 𝑘 at time 𝑡 (i.e. 𝑧𝑐,𝑗,𝑘,𝑡 = 1). 

min  𝑇𝐶 (1) 

𝑠. 𝑡. 𝑇𝐶 ≥ ∑ 𝑇𝑛

𝑛∈𝑁
                   ∀ 𝑛 ∈ 𝑁 

(2) 

𝑇𝑛 ≥ (𝑡 + 𝐷) · 𝑧𝑐,𝑗,𝑘,𝑡                 ∀ 𝑛 ∈ 𝑁, ∀ 𝑐 ∈ 𝐶𝑛, ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (3) 

Constraints (4) – (10) correspond to the constraints for the cranes. Constraint (4) defines the initial 

positions of the cranes. Constraint (5) ensures the crane to stay at one position at a time. Constraint 

(6) defines the maximum velocity of cranes. Constraints (7) and (8) ensure the cranes stay at the 

pickup or delivery location for long enough to finish the pickup or delivery operations. For each 

crane, it can only do one task at a time as stated in constraints (9) and (10).  

𝑥𝑐,𝑃𝑜𝑠𝐼𝑐,0 = 1                                 ∀ 𝑐 ∈ 𝐶𝑛 (4) 
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∑ 𝑥𝑐,𝑖,𝑡
𝑖∈𝐼𝑛

= 1                            ∀𝑐 ∈ 𝐶𝑛, ∀𝑡 ∈ 𝑇 
(5) 

𝑥𝑐,𝑖,𝑡 ≤ 𝑥𝑐,𝑖−1,𝑡+1 + 𝑥𝑐,𝑖,𝑡+1 + 𝑥𝑐,𝑖+1,𝑡+1                    ∀𝑐 ∈ 𝐶𝑛, ∀𝑖 ∈ 𝐼𝑛, ∀𝑡 ∈ 𝑇 (6) 

𝑦𝑐,𝑗,𝑘,𝑡 ≤ 𝑥𝑐,𝑃𝑜𝑠𝑝𝑛,𝑘 ,𝑡′          ∀𝑛 ∈ 𝑁, ∀𝑐 ∈ 𝐶𝑛, ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾, ∀𝑡, 𝑡′ ∈ 𝑇, 0 ≤ 𝑡′ − 𝑡 ≤ 𝑃 (7) 

𝑧𝑐,𝑗,𝑘,𝑡 ≤ 𝑥𝑐,𝑃𝑜𝑠𝑑𝑛,𝑘,𝑡′          ∀𝑛 ∈ 𝑁, ∀𝑐 ∈ 𝐶𝑛, ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾, ∀𝑡, 𝑡′ ∈ 𝑇, 0 ≤ 𝑡′ − 𝑡 ≤ 𝐷 (8) 

𝑦𝑐,𝑗,𝑘,𝑡 + 𝑧𝑐,𝑗,𝑘,𝑡′′ + 𝑦𝑐,𝑗′,𝑘′,𝑡′ ≤ 2 (9) 

∀𝑐 ∈ 𝐶𝑛, ∀𝑗, 𝑗′ ∈ 𝐽𝑛, ∀𝑘, 𝑘′ ∈ 𝐾, ∀𝑡, 𝑡′, 𝑡′′ ∈ 𝑇, 𝑗 ≠ 𝑗′ 𝑜𝑟 𝑘 ≠ 𝑘′, 𝑡 ≤ 𝑡′ ≤ 𝑡′′  

𝑦𝑐,𝑗,𝑘,𝑡 + 𝑧𝑐,𝑗,𝑘,𝑡′′ + 𝑦𝑐,𝑗′,𝑘′,𝑡′ ≤ 2 (10) 

∀𝑐 ∈ 𝐶𝑛, ∀𝑗, 𝑗′ ∈ 𝐽𝑛, ∀𝑘, 𝑘′ ∈ 𝐾, ∀𝑡, 𝑡′, 𝑡′′ ∈ 𝑇, 𝑗 ≠ 𝑗′ 𝑜𝑟 𝑘 ≠ 𝑘′, 𝑡 ≤ 𝑡′ ≤ 𝑡′′  

To be more specific, constraints (9) and (10) are derived from the logical forms (11) and 

(12)(Raman and Grossmann 1994), which means that for one crane, during the pickup and delivery 

status of a single task, it cannot conduct any other tasks. 

𝑦𝑐,𝑗,𝑘,𝑡  ⋀  𝑧𝑐,𝑗,𝑘,𝑡′′  ⇒ ¬ 𝑦𝑐,𝑗′,𝑘′,𝑡′   (11) 

∀𝑐 ∈ 𝐶𝑛, ∀𝑗, 𝑗′ ∈ 𝐽𝑛, ∀𝑘, 𝑘′ ∈ 𝐾, ∀𝑡, 𝑡′, 𝑡′′ ∈ 𝑇, 𝑗 ≠ 𝑗′ 𝑜𝑟 𝑘 ≠ 𝑘′, 𝑡 ≤ 𝑡′ ≤ 𝑡′′  
 

 

𝑦𝑐,𝑗,𝑘,𝑡  ⋀  𝑧𝑐,𝑗,𝑘,𝑡′′  ⇒ ¬ 𝑧𝑐,𝑗′,𝑘′,𝑡′ (12) 

∀𝑐 ∈ 𝐶𝑛, ∀𝑗, 𝑗′ ∈ 𝐽𝑛, ∀𝑘, 𝑘′ ∈ 𝐾, ∀𝑡, 𝑡′, 𝑡′′ ∈ 𝑇, 𝑗 ≠ 𝑗′ 𝑜𝑟 𝑘 ≠ 𝑘′, 𝑡 ≤ 𝑡′ ≤ 𝑡′′  

Constraint (13) is an additional constraint for blocks with multiple cranes. It ensures the safety 

distance and relative positions between cranes, for example, the left crane is always on the left of 

the right crane. In this way, the cranes will not overlap during operation. 

𝑥𝑐,𝑖,𝑡 + 𝑥𝑐′,𝑖′,𝑡 ≤ 1                ∀𝑐, 𝑐′ ∈ 𝐶𝑛, ∀𝑖 ∈ 𝐼𝑛, ∀𝑡 ∈ 𝑇, 𝑐 > 𝑐′, 𝑖′ < 𝑖 + 𝐿𝑠𝑎𝑓𝑒𝑡𝑦   (13) 

Constraints (14) – (18) are constraints for the tasks. For each object, it should be picked up or 

delivered once as enforced by constraints (14) and (15). The pickup and delivery of one object 

should be completed by the same crane as enforced by constraint (16). Constraint (17) ensures that 

the pickup of each object should be conducted before delivery. For tasks inside the same cell, the 

next step begins after the previous step is finished as enforced by constraint (18). 

∑ 𝑦𝑐,𝑗,𝑘,𝑡 = 1                 ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾
𝑐∈𝐶𝑛,𝑡∈𝑇

   (14) 

∑ 𝑧𝑐,𝑗,𝑘,𝑡 = 1                 ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾
𝑐∈𝐶𝑛,𝑡∈𝑇

 
(15) 

∑ 𝑦𝑐,𝑗,𝑘,𝑡
𝑡

= ∑ 𝑧𝑐,𝑗,𝑘,𝑡
𝑡

            ∀𝑐 ∈ 𝐶𝑛, ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾, ∀𝑡, 𝑡′ ∈ 𝑇, 𝑡 ≠ 𝑡′ (16) 
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𝑦𝑐,𝑗,𝑘,𝑡′ + 𝑧𝑐,𝑗,𝑘,𝑡 ≤ 1                    ∀𝑐 ∈ 𝐶𝑛, ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾, ∀𝑡, 𝑡′ ∈ 𝑇, 𝑡 ≤ 𝑡′ (17) 

∑ 𝑦𝑐,𝑗,𝑘′,𝑡′
𝑐∈𝐶𝑛

+∑ 𝑧𝑐,𝑗,𝑘,𝑡
𝑐∈𝐶𝑛

≤ 1      ∀𝑖 ∈ 𝐼𝑛, ∀𝑘, ∀𝑘′ ∈ 𝐾, ∀𝑡, 𝑡′ ∈ 𝑇, 𝑡′ ≤ 𝑡, 𝑘 < 𝑘′ (18) 

 

Constraints (19) – (20), which are big-M constraints, are the constraints on the use of the machines. 

Since the machine can only deal with one object at a time, the time gap between the use of 

machines should be longer than the processing time of machines. If the machine is in use, the 

cranes cannot unload the object, and must wait overhead of the machine. Therefore, there should 

be a sequential order for the unloading of objects. 

(𝑡 + 𝐷) ×∑ 𝑧𝑐,𝑗,𝑘𝑞,𝑡
𝑐∈𝐶𝑛

 +  𝑄𝑃𝑞  ≤  (𝑡′ + 𝐷) ×∑ 𝑧𝑐,𝑗′,𝑘𝑞,𝑡′
𝑐∈𝐶𝑛

+𝑀 · (1 − 𝑤𝑞,𝑗,𝑗′) 
(19) 

∀𝑐 ∈ 𝐶𝑛, ∀𝑗, 𝑗′ ∈ 𝐽𝑛, ∀𝑡, 𝑡′ ∈ 𝑇, ∀𝑞 ∈ 𝑄, 𝑗 ≠ 𝑗′  

(𝑡′ + 𝐷) ×∑ 𝑧𝑐,𝑗′,𝑘𝑞,𝑡′
𝑐∈𝐶𝑛

 +  𝑄𝑃𝑞  ≤  (𝑡 + 𝐷) ×∑ 𝑧𝑐,𝑗,𝑘𝑞,𝑡
𝑐∈𝐶𝑛

+𝑀 · 𝑤𝑞,𝑗,𝑗′  
(20) 

∀𝑐 ∈ 𝐶𝑛, ∀𝑗, 𝑗′ ∈ 𝐽𝑛, ∀𝑡, 𝑡′ ∈ 𝑇, ∀𝑞 ∈ 𝑄, 𝑗 ≠ 𝑗′  

Constraint (21) specifies the domains of the decision variables. 

𝑦𝑐,𝑗,𝑘,𝑡, 𝑧𝑐,𝑗,𝑘,𝑡, 𝑥𝑐,𝑖,𝑡, 𝑤𝑞,𝑗,𝑗′ ∈ {0,1}, 𝑇𝐶, 𝑇𝑛 ≥ 0 (21) 

In summary, the discrete-time MILP model is given by the objective function in equation (1), 

subject to the constraints (2) - (10) and (13) – (21).  

5.3. Continuous-time MILP 

The discrete-time MILP model can be computationally expensive since the extension of the time 

horizon leads to an exponential increase in model complexity due to the growing number of 

discrete time variables. 

In order to reduce the size of the model, we transform the discrete-time MILP model into the 

continuous-time MILP model. We convert the discrete time points into continuous time, and 

transform the position constraints into time constraints using velocity. Instead of focusing on what 

the cranes do at each time point, we place the emphasis on the start time and end time of each task 

for each crane. Another advantage is that not being limited to the discrete time points, we have a 

wider range of velocity values. As will be shown later in the computational results, this model 

works well for blocks with a single crane. The constraints for the continuous-time MILP model 

are presented below, along with an illustrative diagram in Fig.9, followed by some additional 

parameters and variables. 

𝑣: Crane velocity. 

𝑟𝑗,𝑗′,𝑘,𝑘′: If cell 𝑗 step 𝑘 starts before cell 𝑗′ step 𝑘′. 
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𝑠𝑝𝑗,𝑘: Start time for the pickup of cell 𝑗 step 𝑘. 

𝑠𝑑𝑗,𝑘: Start time for the delivery of cell 𝑗 step 𝑘. 

𝑒𝑝𝑗,𝑘: End time for the pickup of cell 𝑗 step 𝑘. 

𝑒𝑑𝑗,𝑘: End time for the delivery of cell 𝑗 step 𝑘. 

 

Fig.9. Continuous-time MILP model schematic diagram. 

After converting the location information into time information, some of the constraints in the 

discrete-time MILP model can be replaced by continuous-time constraints. Constraint (3) can be 

replaced by constraint (22), with continuous variables for the completion time in blocks with one 

crane. Furthermore, constraints (4) – (21) can be replaced by constraints (23) – (32) for crane 

movement and task assignments. 

𝑇𝑛 ≥ 𝑒𝑑𝑗,𝑘                                    ∀ 𝑛 ∈ 𝑁, ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾   (22) 

Constraints (23) - (24) specify the start and end time for pickup and delivery. 

𝑒𝑝𝑗,𝑘 ≥ 𝑠𝑝𝑗,𝑘 + 𝑃                         ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾   (23) 

𝑒𝑑𝑗,𝑘 ≥ 𝑠𝑑𝑗,𝑘 + 𝐷                         ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾 (24) 

Considering the initial conditions, constraint (25) specifies the earliest start time for each task, 

where 𝑃𝑜𝑠𝐼𝑐 and 𝑃𝑜𝑠𝑝𝑛,𝑘 are given position parameters. 

𝑠𝑑𝑗,𝑘 ≥ |𝑃𝑜𝑠𝐼𝑐 − 𝑃𝑜𝑠𝑝𝑛,𝑘|/𝑣                                      ∀𝑛 ∈ 𝑁, ∀𝑐 ∈ 𝐶𝑛, 𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾   (25) 

Constraints (26) – (27) define the task sequences for one cell, accounting for the transfer time in 

one task and between tasks. 

𝑠𝑑𝑗,𝑘 ≥ 𝑒𝑝𝑗,𝑘 + |𝑃𝑜𝑠𝑑𝑛,𝑘 − 𝑃𝑜𝑠𝑝𝑛,𝑘|/𝑣                   ∀𝑛 ∈ 𝑁, ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾   (26) 

𝑠𝑝𝑗,𝑘′ ≥ 𝑒𝑑𝑗,𝑘 + |𝑃𝑜𝑠𝑑𝑛,𝑘 − 𝑃𝑜𝑠𝑝𝑛,𝑘′|/𝑣                ∀𝑛 ∈ 𝑁, ∀𝑗 ∈ 𝐽𝑛, ∀𝑘, 𝑘′ ∈ 𝐾, 𝑘 < 𝑘′ (27) 

Constraints (28) – (29) are the big-M constraints for tasks in different cells, so that tasks between 

different cells can be crossed. 
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𝑒𝑑𝑗,𝑘 + |𝑃𝑜𝑠𝑑𝑛,𝑘 − 𝑃𝑜𝑠𝑝𝑛,𝑘′|/𝑣 ≤ 𝑠𝑝𝑗′,𝑘′ +𝑀 · (1 − 𝑟𝑗,𝑗′,𝑘,𝑘′) (28) 

∀𝑛 ∈ 𝑁, ∀𝑗, 𝑗′ ∈ 𝐽𝑛, ∀𝑘, 𝑘′ ∈ 𝐾, 𝑗 ≠ 𝑗′  

𝑒𝑑𝑗′,𝑘′ + |𝑃𝑜𝑠𝑑𝑛,𝑘′ − 𝑃𝑜𝑠𝑝𝑛,𝑘|/𝑣 ≤ 𝑠𝑝𝑗,𝑘 +𝑀 · 𝑟𝑗,𝑗′,𝑘,𝑘′      (29) 

∀𝑛 ∈ 𝑁, ∀𝑗, 𝑗′ ∈ 𝐽𝑛, ∀𝑘, 𝑘′ ∈ 𝐾, 𝑗 ≠ 𝑗′  

Constraints (30) – (31) are the constraints for the use of machines. 

 

 

𝑒𝑑𝑗,𝑘𝑞  +  𝑄𝑃𝑞  ≤  𝑒𝑑𝑗′,𝑘𝑞 +𝑀 · (1 − 𝑤𝑞,𝑗,𝑗′)                  ∀𝑗, 𝑗
′ ∈ 𝐽𝑛, ∀𝑞 ∈ 𝑄, 𝑗 ≠ 𝑗′ (30) 

𝑒𝑑𝑗′,𝑘𝑞  +  𝑄𝑃𝑞  ≤  𝑒𝑑𝑗,𝑘𝑞 +𝑀 · 𝑤𝑞,𝑗,𝑗′                               ∀𝑗, 𝑗
′ ∈ 𝐽𝑛, ∀𝑞 ∈ 𝑄, 𝑗 ≠ 𝑗′ (31) 

Constraint (32) specifies the domains for the additional decision variables. 

𝑠𝑝𝑗,𝑘, 𝑠𝑑𝑗,𝑘, 𝑒𝑝𝑗,𝑘, 𝑒𝑑𝑗,𝑘 ≥ 0, 𝑟𝑗,𝑗′,𝑘,𝑘′ ∈ {0,1}   (32) 

In summary, the continuous-time MILP model is given by the objective function in equation (1), 

subject to the constraints (2) and (22) – (32).  

5.4. Constraint programming (CP) model 

5.4.1 Introduction of the CP model 

Constraint programming (CP) is a logic-based method that utilizes implicit constraints and logical 

inference for optimization (Hooker, 2002). Constraint Programming does not follow a fixed 

canonical form, allowing it to flexibly accommodate a wide range of variable types and constraint 

structures. CP is often used for constraint satisfaction problems (CSP) and constraint optimization 

problems (COP), defined by a collection of variables, each associated with a domain and 

constraints that restrict combinations of their values (Rossi et al., 2008). While CP is primarily 

designed to find feasible solutions that satisfy all given constraints, it can also be extended to 

handle optimization by searching through a sequence of feasible solutions that progressively 

improve the objective function. A key feature of CP is that it operates directly on discrete variables, 

rather than relying on continuous relaxations (Pesant, 2014). Its search method is primarily driven 

by domain reduction, constraint propagation, and tree search to efficiently explore the solution 

space (Hooker, 2002). These characteristics make CP suitable for crane scheduling problems, 

where tasks, resources, and time slots are naturally discrete, and the problem involves complex 

constraints such as task sequencing, non-overlapping crane operations, and shared use of machines. 

5.4.2 Formulation of the CP model 

To implement CP models effectively, we apply the Optimization Programming Language (OPL), 

which provides a high-level modeling framework tailored for constraint-based problem solving 

(Van Hentenryck et al., 1999). OPL supports key CP functionalities such as decision variable 
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declarations, constraint definitions, and search strategies, allowing complex scheduling logic to be 

expressed in a compact and intuitive manner. In OPL CP, there is a special type of decision variable 

called interval variables. These interval variables are both variables and constraints. A typical 

interval variable can be written in the form as 𝑁𝑒𝑤𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑉𝑎𝑟(𝑠𝑡𝑎𝑟𝑡, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑒𝑛𝑑, 𝑛𝑎𝑚𝑒), 

where 𝑒𝑛𝑑 −  𝑠𝑡𝑎𝑟𝑡 ==  𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛. It should also be mentioned that 𝑠𝑡𝑎𝑟𝑡, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑒𝑛𝑑 can 

be constraints or variables. In particular, when certain tasks are optional, they are modeled as 

optional interval variables using the function as 

𝑁𝑒𝑤𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑉𝑎𝑟(𝑠𝑡𝑎𝑟𝑡, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑒𝑛𝑑, 𝑖𝑠_𝑝𝑟𝑒𝑠𝑒𝑛𝑡, 𝑛𝑎𝑚𝑒) , where 𝑖𝑠_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 

indicates if the interval is active or not. The interval variables are widely used in scheduling 

problems, often together with constraints related to sequences, such as 𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝 , 

𝐸𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡, and 𝐸𝑛𝑑𝐴𝑡𝑆𝑡𝑎𝑟𝑡. The followings are the OPL functions needed in our crane 

scheduling problem, together with illustrative diagrams in Fig.10 and some additional variables.  

OPL functions 

𝐸𝑥𝑎𝑐𝑡𝑙𝑦𝑂𝑛𝑒(𝑥1, 𝑥2…𝑥𝑛): Only one variable is 𝑇𝑟𝑢𝑒 among a set of variables 𝑥. 

𝑆𝑡𝑎𝑟𝑡𝑂𝑓(𝑧): The start time for interval variable 𝑧. 

𝐸𝑛𝑑𝑂𝑓(𝑧): The end time for interval variable 𝑧. 

𝐿𝑒𝑛𝑔𝑡ℎ𝑂𝑓(𝑧): The length of interval variable 𝑧, i.e., the time gap between its start and end time. 

𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑜𝑓(𝑧): The presence status of interval variable 𝑧.  

𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝({𝑧1, 𝑧2…𝑧𝑛}, 𝑡𝑖,𝑗) : There should be no overlaps for interval variables 𝑧 , iih  h   

minimum him  gap of 𝑡𝑖,𝑗 b hi  n 𝑧𝑖 and 𝑧𝑗 . 

𝐸𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑥, 𝑦, 𝑡) : 𝑦  can start 𝑡  time after the end of 𝑥 , that is 𝐸𝑛𝑑𝑂𝑓(𝑥) + 𝑡 ≤

𝑆𝑡𝑎𝑟𝑡𝑂𝑓(𝑦). 

(𝑋)𝑂𝑛𝑙𝑦𝐸𝑛𝑓𝑜𝑟𝑐𝑒𝐼𝑓(𝑥1, 𝑥2, … , 𝑥𝑛): If all Boolean variables 𝑥1, 𝑥2, … , 𝑥𝑛 are True, then constraint 

𝑋 is active. 

𝐴𝑏𝑠𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦(𝑋): The absolute value of the expression of 𝑋. 

Additional variables 

𝑃𝑜𝑠𝑐,𝑡: The position for crane 𝑐 at time 𝑡. 

𝐼𝑛𝑡𝑣𝑗,𝑘
𝑐 : Interval variables during which crane 𝑐 transfers the object in cell 𝑗 step 𝑘. 

𝐼𝑛𝑡𝑣𝑗,𝑘: Interval variables during which cell 𝑗 step 𝑘 is conducted. 

𝑎𝑠𝑠𝑐,𝑗,𝑘: If cell 𝑗 step 𝑘 is assigned to crane 𝑐. 
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Fig.10. CP model schematic diagrams. 

Constraint (32) represents the objective function for the CP model, which is the same as constraints 

(1) in the discrete-time MILP model. Constraints (33) – (34) define the completion time in total 

and the separate completion time in each block. 

min 𝑇𝐶  (32) 

𝑠. 𝑡. 𝑇𝐶 ≥ ∑ 𝑇𝑛

𝑛∈𝑁
                    ∀ 𝑛 ∈ 𝑁 

(33) 

𝑇𝑛 ≥ 𝑒𝑑𝑗,𝑘                                    ∀ 𝑛 ∈ 𝑁, ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾  (34) 

Constraint (35) defines the initial position for the cranes. 

𝑃𝑜𝑠𝑐,0 = 𝑃𝑜𝑠𝐼𝑐                              ∀𝑐 ∈ 𝐶𝑛  (35) 

Constraint (36) states the relationship between the integer position variables 𝑃𝑜𝑠𝑐,𝑡 and the binary 

position variable 𝑥𝑐,𝑖,𝑡. 

𝑃𝑜𝑠𝑐,𝑡 = 𝑖 ·∑ 𝑥𝑐,𝑖,𝑡
𝑖∈𝐼

               ∀𝑐 ∈ 𝐶𝑛, ∀𝑖 ∈ 𝐼𝑛, ∀𝑡 ∈ 𝑇  (36) 

Constraint (37) is identical to constraint (5) to ensure the crane only stays at one position at a time. 

𝐸𝑥𝑎𝑐𝑡𝑙𝑦𝑂𝑛𝑒({𝑥𝑐,𝑖,𝑡|𝑖 ∈ 𝐼})       ∀𝑐 ∈ 𝐶𝑛, ∀𝑡 ∈ 𝑇  (37) 

Constraint (38) defines non-interference constraints for multiple cranes. 

𝑃𝑜𝑠𝑐,𝑡 + 𝐿𝑠𝑎𝑓𝑒𝑡𝑦 ≤ 𝑃𝑜𝑠𝑐′,𝑡        ∀𝑐, 𝑐
′ ∈ 𝐶𝑛, ∀𝑖 ∈ 𝐼𝑛, ∀𝑡 ∈ 𝑇, 𝑐 < 𝑐′  (38) 

Constraint (39) ensures the operation time for different tasks assigned to the same crane do not 

overlap. 

{(𝑠𝑝𝑗,𝑘 ≥ 𝑒𝑑𝑗′,𝑘′)⋁(𝑠𝑝𝑗′,𝑘′ ≥ 𝑒𝑑𝑗,𝑘)}𝑂𝑛𝑙𝑦𝐸𝑛𝑓𝑜𝑟𝑐𝑒𝐼𝑓(𝑎𝑠𝑠𝑐,𝑗,𝑘 = 𝑎𝑠𝑠𝑐,𝑗′,𝑘′)  (39) 

∀𝑐 ∈ 𝐶𝑛, ∀𝑗, 𝑗′ ∈ 𝐽𝑛, ∀𝑘, 𝑘′ ∈ 𝐾, 𝑗 ≠ 𝑗′ 𝑜𝑟 𝑘 ≠ 𝑘′  

Similarly, constraints (40) – (42) specify the start time, end time, time length, and the activation 

conditions of the interval variable 𝐼𝑛𝑡𝑣𝑗,𝑘. 

𝑆𝑡𝑎𝑟𝑡𝑂𝑓(𝐼𝑛𝑡𝑣𝑗,𝑘) = 𝑠𝑝𝑗,𝑘                 ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾  (40) 



17 

 

𝐸𝑛𝑑𝑂𝑓(𝐼𝑛𝑡𝑣𝑗,𝑘) = 𝑒𝑑𝑗,𝑘                   ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾 (41) 

𝐿𝑒𝑛𝑔𝑡ℎ𝑂𝑓(𝐼𝑛𝑡𝑣𝑗,𝑘) = 𝑃 + 𝐷 + |𝑃𝑜𝑠𝑑𝑛,𝑘 − 𝑃𝑜𝑠𝑝𝑛,𝑘|/𝑣           ∀𝑛 ∈ 𝑁, ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾  (42) 

Constraint (43) defines the sequence for steps in the same cell. 

𝐸𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝐼𝑛𝑡𝑣𝑗,𝑘, 𝐼𝑛𝑡𝑣𝑗,𝑘′ , 0)                   ∀𝑗 ∈ 𝐽𝑛, ∀𝑘, 𝑘′ ∈ 𝐾, 𝑘 < 𝑘′ (43) 

Constraints (44) – (45) use the logic form to ensure that the cranes stay at right positions during 

pickup and delivery. Specifically, if the pickup and delivery duration of operations can be ignored, 

we can apply constraints (46) – (47) to reduce the model complexity. 

({𝑃𝑜𝑠𝑐,𝑡|𝑠𝑝𝑗,𝑘 ≤ 𝑡 ≤ 𝑒𝑝𝑗,𝑘} = 𝑃𝑜𝑠𝑝𝑛,𝑘)𝑂𝑛𝑙𝑦𝐸𝑛𝑓𝑜𝑟𝑐𝑒𝐼𝑓(𝑎𝑠𝑠𝑐,𝑗,𝑘 = 1, 𝑠𝑝𝑗,𝑘 = 𝑡)  (44) 

∀𝑛 ∈ 𝑁, ∀𝑐 ∈ 𝐶𝑛, ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇  

({𝑃𝑜𝑠𝑐,𝑡|𝑠𝑑𝑗,𝑘 ≤ 𝑡 ≤ 𝑒𝑑𝑗,𝑘} = 𝑃𝑜𝑠𝑑𝑛,𝑘)𝑂𝑛𝑙𝑦𝐸𝑛𝑓𝑜𝑟𝑐𝑒𝐼𝑓(𝑎𝑠𝑠𝑐,𝑗,𝑘 = 1, 𝑠𝑝𝑗,𝑘 = 𝑡) (45) 

∀𝑛 ∈ 𝑁, ∀𝑐 ∈ 𝐶𝑛, ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇  

(𝑃𝑜𝑠𝑐,𝑡 = 𝑃𝑜𝑠𝑝𝑛,𝑘)𝑂𝑛𝑙𝑦𝐸𝑛𝑓𝑜𝑟𝑐𝑒𝐼𝑓(𝑎𝑠𝑠𝑐,𝑗,𝑘 = 1, 𝑠𝑝𝑗,𝑘 = 𝑡)  (46) 

∀𝑛 ∈ 𝑁, ∀𝑐 ∈ 𝐶𝑛, ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇  

(𝑃𝑜𝑠𝑐,𝑡 = 𝑃𝑜𝑠𝑑𝑛,𝑘)𝑂𝑛𝑙𝑦𝐸𝑛𝑓𝑜𝑟𝑐𝑒𝐼𝑓(𝑎𝑠𝑠𝑐,𝑗,𝑘 = 1, 𝑠𝑑𝑗,𝑘 = 𝑡)  (47) 

∀𝑛 ∈ 𝑁, ∀𝑐 ∈ 𝐶𝑛, ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇  

Constraint (48) defines the velocity of the cranes, and constraint (49) makes sure that the time gap 

between deliveries of objects using the same machine is larger than the processing time of the 

machine. 

𝐴𝑏𝑠𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦(𝑃𝑜𝑠𝑐,𝑡 − 𝑃𝑜𝑠𝑐,𝑡+1) ≤ 𝑣                   ∀𝑐 ∈ 𝐶𝑛, ∀𝑡 ∈ 𝑇  (48) 

𝐴𝑏𝑠𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 (𝑒𝑑𝑗,𝑘𝑞 − 𝑒𝑑𝑗′,𝑘𝑞) ≥ 𝑄𝑃𝑞                 ∀𝑗, 𝑗
′ ∈ 𝐽𝑛, 𝑞 ∈ 𝑄, 𝑘𝑞 ∈ 𝐾, 𝑗 ≠ 𝑗′ (49) 

Constraint (50) defines the domains for the additional decision variables. 

𝑃𝑜𝑠𝑐,𝑡 ≥ 0, 𝑎𝑠𝑠𝑐,𝑗,𝑘 ∈ {0,1}  (50) 

We should note that, for single-crane scheduling problems, constraint (39) can be replaced by 

constraints (51) – (55) to simplify the model. Constraints (51) – (54) are constraints to define the 

start time, end time, time length, and presence of the interval variable 𝐼𝑛𝑡𝑣𝑗,𝑘
𝑐  separately. 𝐼𝑛𝑡𝑣𝑗,𝑘

𝑐  

can only be applied to single-crane conditions since the time length for the transfer of each task is 

a fixed value, without possible waiting time for yielding or to avoid interference. 
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𝑆𝑡𝑎𝑟𝑡𝑂𝑓( 𝐼𝑛𝑡𝑣𝑗,𝑘
𝑐 ) = 𝑠𝑝𝑗,𝑘                   ∀𝑐 ∈ 𝐶𝑛, ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾  (51) 

𝐸𝑛𝑑𝑂𝑓( 𝐼𝑛𝑡𝑣𝑗,𝑘
𝑐 ) = 𝑒𝑑𝑗,𝑘                     ∀𝑐 ∈ 𝐶𝑛, ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾 (52) 

𝐿𝑒𝑛𝑔𝑡ℎ𝑂𝑓(𝐼𝑛𝑡𝑣𝑗,𝑘
𝑐 ) = 𝑃 + 𝐷 +

|𝑃𝑜𝑠𝑑𝑛,𝑘 − 𝑃𝑜𝑠𝑝𝑛,𝑘|

𝑣
             ∀𝑛 ∈ 𝑁, ∀𝑐 ∈ 𝐶𝑛, ∀𝑘 ∈ 𝐾 

 (53) 

𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑜𝑓( 𝐼𝑛𝑡𝑣𝑗,𝑘
𝑐 ) = 0                  ∀𝑐 ∈ 𝐶𝑛, ∀𝑗 ∈ 𝐽𝑛, ∀𝑘 ∈ 𝐾   (54) 

Constraint (52) ensures that the tasks assigned to the same crane will not overlap with each other.  

𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝( 𝐼𝑛𝑡𝑣𝑗,𝑘
𝑐 )                   ∀𝑐 ∈ 𝐶𝑛  (55) 

In summary, the CP model is defined by the objective function (32), subject to the constraints (33) 

– (55). 

6. Solution strategy 

Solving the full-time industrial tankhouse crane scheduling problem is computationally expensive, 

whether using the discrete-time MILP, the continuous-time MILP, or the CP models Therefore, we 

propose a decomposition method to reduce the model size and decrease the computational expense.  

One straightforward decomposition method is to decompose the problem block by block. We first 

conduct the optimization for each block to find optimal task sequences, and then regard the 

optimized task sequences as given, to make the allocations for the machines. This method divides 

the problem into a typical crane scheduling problem and a typical machine scheduling problem. 

However, there are two disadvantages of this straightforward decomposition method. First, even 

while considering cells in one block, the model size is still large. For example, if one cell needs 

four tasks, then ten cells will involve forty tasks, with a given number of hours within a specified 

time horizon. Second, limited to capacities of machines, there can be much difference between the 

optimal task sequences in each block and those across different blocks. Fixing task sequences in 

advance leaves limited flexibility for optimizing machine assignments. 

Due to the limitations of the straightforward decomposition method, we propose an improved 

decomposition method, which decomposes the problem cell by cell. We first define three statuses 

for each cell: “completed”, “in operation”, and “to be operated”. Only the cells “in operation” will 

utilize the machines, so we do not need to consider the cells which have in status “completed”, or 

“to be operated” when assigning machines. In real cases, it is impossible that all cells are “in 

operation” at the same time. Therefore, with a maximum number of cells “in operation” status, 

when one cell changes the status from “in operation” into “completed” status, there will be another 

cell turning from “to be operated” into “in operation” status. This decomposition strategy is 

presented below in pseudocode with an illustrative example, involving some additional sets. 
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Additional sets 

𝐴𝑛: The set of current “in operation” cells in block 𝑛. 

𝐾𝑗: The set of subtasks belonging to cell 𝑗. 

𝐴𝐾: The set of active tasks to be optimized. 

𝐶𝐾: The set of completed tasks. 

𝑂𝐾: The set of ongoing tasks, i.e. the object is being transferred. 

Algorithm: Machine-based decomposition strategy 

Assume: maximum 𝑚 cells are at “in operation” status at a time 

Initialize: 

Set 𝐴𝑛 ← {𝑗1, 𝑗2, … , 𝑗𝑚} ⊆ 𝐽𝑛, ∀𝑛 ∈ 𝑁  

Set 𝐴𝐾 ← ⋃ 𝐾𝑗∀𝑗∈𝐴𝑛  

Set 𝐶𝐾 ← ∅ 

𝑃𝑜𝑠𝐼𝑐  ← 𝑃𝑜𝑠𝑐,0, ∀𝑐 ∈ 𝐶𝑛 

while 𝐴𝐾 ≠ ∅ do 
Optimize active tasks 𝐴𝐾 

Record 𝑡 ← time when first cell 𝑐1 across all blocks is completed 

Record 𝑡𝑞 (< 𝑡), ∀𝑞 ∈ 𝑄 ← last usage time before t 

Update: 

    𝑃𝑜𝑠𝐼𝑐 ← 𝑃𝑜𝑠𝑐,𝑡 , ∀𝑐 ∈ 𝐶𝑛 

    Machine availability at 𝑡𝑞 

    The sets of 𝐴𝑛 , 𝐴𝐾, 𝐶𝐾 and 𝑂𝐾 

        𝐴𝑛 ← 𝐴𝑛\{𝑐1} 
        for 𝑗 ∈ 𝐴𝑛 do 

            for 𝑘 ∈ 𝐾𝑗 do 

                if 𝑘 is completed then 

                    𝐶𝐾 ← 𝐶𝐾 ∪ {𝑘} 
                    𝐴𝐾 ← 𝐴𝐾\{𝑘} 
                else // the object is being transferred by crane 𝑐 

                        𝑃𝑂𝑆𝑝𝑗,𝑘 ← 𝑃𝑂𝑆𝑐,𝑡 

                        𝑆𝑡𝑎𝑟𝑡𝑂𝑓(𝐼𝑛𝑡𝑣𝑗,𝑘) ← 0 

    if ∃𝑗 ∈ 𝐽𝑛\𝐴𝑛 from the same block as 𝑐1 then 

        𝐴𝑛 ← 𝐴𝑛 ∪ {𝑗}  
        𝐴𝐾 ← 𝐴𝐾⋃ 𝐾𝑗𝑗  

end while // |𝐴𝑛| ≤ 𝑚, ∀𝑛 ∈ 𝑁 

 

The algorithm above describes the machine-based decomposition strategy, and we give an 

illustrative example below for better explanation. In Fig.11, we assume in each block, a maximum 

of three cells are “in operation” at the same time. Therefore, we start with the optimization of six 

cells in block 1 and 2. After optimization, we find that cell 1 in block 1 is first completed. Then 

we update the crane positions and the subtasks completion status in the other five cells. Regardless 

of whether cell 4 in block 1 will be in operation next, we should add it in to the next optimization 

stage. Then in our second optimization, we find that the next completed cell is cell 1 in block 2. 

Therefore, when we conduct our third-time optimization iteration, we add cell 4 in block 2 to 
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ensure a maximum of three cells in operation in block 2. Such iterative optimizations can be 

performed until the number of the remaining incomplete cells are less equal than three in each 

block. The advantage of this decomposition method is that the scale of each small piece of 

optimization subproblem will not be so large, depending on the maximum number of cells 

operating at the same time. Furthermore, if the operations are disturbed due to unexpected events, 

we can record and update the positions of cranes and the status of subtasks of cells to apply a new 

optimization. 

 

Fig.11. Decomposition strategy. 

7. Results  

7.1. Computational environment 

All models are executed on a computer with an Intel Core i7-13620H CPU (2.40 GHz), 16 GB of 

RAM, and a 512 GB SSD. The MILP models are run in GAMS 46.5.0 using Gurobi 11.0 

(https://www.gurobi.com.) as the solver. The constraint programming (CP) models are 

implemented in Python 3.12 using OR-Tools 9.8 with the CP-SAT (Perron L. and Didier F., 2025) 

solver. The time horizon is set to 30 minutes and 150 minutes in the small and medium examples, 

respectively. The time horizon is set to 100 minutes in the real-world examples in each iteration. 

7.2. Small-scale examples 

Example 1.1: We first consider a small-scale example for 2 cells with anode operations in single-

crane conditions, which consists of 8 steps (Fig. 12). The details of the anode operations are 

presented in Section 4.2. Each step will be represented as a separate task in the following crane 
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scheduling examples. In this example, crane 1 moves between the left and the right boundaries to 

conduct anode operations for cells. The corresponding parameters are listed in Table 1.  

Table 1. Parameters for Examples 1 and 2. 

Pickup time (min) 1 

Delivery time (min) 1 

Velocity (m· min-1) 1 

Safety distance (m) 1 

Distance unit (m) 1 

Cleaning time (min) 5 

Stripping machine operation time (min) 3 

 

We assume that cell 1 and cell 2 share the same position as the group. The relative positions of the 

group, the stripping machine, and the anode machine are shown in the figure, with one-meter 

intervals between them. Since we only consider cells in one block in this example, conflicts among 

the machines are neglected. All cells in one block share the same electrical power supply. Therefore, 

when one cell is under operation, the circuit is interrupted, and all other cells in the block are 

unable to operate. Our goal is to minimize the completion time for these two cells, i.e., inactive 

time. We apply discrete-time MILP, continuous-time MILP, and CP models to this small example 

and compare their performances. In addition, we compare the completion time under two strategies, 

operating the cells sequentially versus allowing cross-execution between cells. 

 

Fig.12. Crane scheduling diagram for example 1.1. 

In this example, since there is only one crane, position interference does not occur during 

operations (Fig.13 (a) and (b)). Furthermore, instead of operating cell by cell, it is more efficient 

to regard the smallest unit as step for optimization. Each cell with anode operations requires 16 

minutes to complete (Fig.13 (c)). If the crane processes the two cells sequentially without 

optimization, the total time would be 32 minutes. In contrast, the optimized solution, which allows 

overlapping operations between cells, completes both in just 30 minutes (Fig.13 (d)), resulting in 

a time saving of 6.25%. 
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Fig.13. a) Crane’s time-position figure for one cell, b) Crane’s time-position figure for two cells, 

c) Crane’s time-task figure for one cell, d) Crane’s time-task figure for two cells. 

The first column of Table 2 illustrates the details of the discrete-time MILP model. Apart from the 

objective variables, almost all variables in the models are binary variables. Furthermore, the model 

has a poor LP relaxation. As a result, it takes over 1 minute to solve the problem. 

Since in block 1, there is only one crane for operation, we can apply the continuous-time MILP 

model without considering crane interference. For the continuous-time MILP model, in the second 

column of Table 2, the number of constraints is reduced from 105 to 102, and the CPU time is 

decreased from more than 1 minute to 0.02 seconds. Therefore, the continuous-time MILP models 

have better performance than the discrete-time MILP models in single-crane scheduling problems.  

Given the weak LP relaxation of both MILP models, we turn to constraint programming (CP) 

models, which handle integer constraints more efficiently. In CP models (Table 2), all of the 

variables are integer variables, without any continuous variables. The constraint numbers as well 

as the CPU time imply that CP models perform as efficiently as the continuous-time MILP models. 

Table 2. Model information for discrete-time MILP, continuous-time MILP, and CP models for one cell in Example 

1.1. 

  Discrete-time MILP Continuous-time MILP Constraint programming (CP) 

Discrete variables 403 12 69 

Continuous variables 2 46 0 

Constraints 139,781 164 113 

LP relaxation (min) 0.38 8 N/A 

Objective value (min) 16 16 16 

CPU time 62.23 s 0.02 s 0.02 s 

 

Next, Table 3 reports the results of the three models for a slightly larger problem involving two 

cells. For the discrete-time MILP models, the constraint number is increased to 600,000 with only 

around 250-variable increase. This is mainly due to the added combinatorial complexity caused by 

the additional sequencing and assignment possibilities. Also, the CPU time rises significantly from 

1 minute to 2 hours. The large increase in the number of constraints and the CPU time indicates 

0 5 10 15

Left boundary

Group

Stripping machine

Anode machine

Right boundary

P
o

si
ti

o
n

Time/min

 Crane

(a)

0 5 10 15

Time/min

T
as

k

 Cell 1

Step 1 Step 2 Step 3 Step 4

(c)

0 5 10 15 20 25 30

Left boundary

Group

Stripping machine

Anode machine

Right boundary

P
o

si
ti

o
n

Time/min

 Crane

(b)

0 5 10 15 20 25 30

Time/min

T
as

k

 Cell 1

 Cell 2

Step 1 Step 2 Step 4Step 3 Step 3Step 1 Step 2Step 4

(d)



23 

 

that for discrete-time MILP models, even a small addition of discrete times or discrete positions 

can lead to an exponential increase in model size. The continuous-time MILP model performs very 

well to solve the problem in 0.05 seconds (Table 3). Though there is a considerable increase in the 

number of variables and constraints in CP models, the computational time is only 0.02 seconds. 

This is because CP solvers are effective for handling large combinatorial spaces by applying 

domain reduction, constraint propagation, and efficient search strategies. In summary, for single-

crane scheduling problems, the continuous-time MILP and the CP models both significantly 

outperform the discrete-time MILP models.  

 

Example 1.2: We next present the same tasks as in the previous example, but this time with two 

cranes (Fig.14). We use the same values as the previous example 1.1 (Table 1). Additionally, since 

crane 1 and crane 2 share the same track as illustrated in Fig.14, a safety distance of 1 meter has 

to be always maintained between them. The objective is to minimize the completion time for two 

cells. Since the continuous-time MILP cannot be applied to the problem, we only compare the 

discrete-time MILP and CP models. 

 

Fig.14. Crane scheduling diagram for example 1.2. 

From Fig.15 (a) and (b), it is shown that crane 2 always stays on the right of crane 1, avoiding 

intersections during operations. As long as the paths do not cross, crane 1 and crane 2 can conduct 

operations at the same time. For example, in Fig.15 (a), crane 1 first picks up the spent steel sheet 

from group, and then moves left to leave space for crane 2 picking up spent copper anode from the 

group. Then, as crane 2 proceeds to the anode machine for delivery, crane 1 moves from the left 

boundary to the stripping machine to complete step 1. As a result, steps 1 and 2 are completed at 

the same time. In addition, under multi-crane conditions, similar to the single-crane case, allowing 

Table 3. Model information for discrete-time MILP, continuous-time MILP, and CP models for two cells in Example 

1.1. 

  Discrete-time MILP Continuous-time MILP Constraint programming (CP) 

Discrete variables 651 56 233 

Continuous variables 2 82 0 

Constraints 628,569 583 417 

LP relaxation (min) 0.33 8 N/A 

Objective value (min) 30 30 30 

CPU time 2.02 h 0.05 s 0.02 s 
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multiple cells to operate simultaneously leads to a reduction in total completion time. Specifically, 

the time is shortened by 2 minutes, from 24 minutes to 22 minutes, representing an 8.33% decrease. 

 

Fig.15 a) Crane’s time-position figure for one cell, b) Crane’s time-position figure for two cells, c) 

Crane’s time-task figure for one cell, d) Crane’s time-task figure for two cells. 

 

 

Comparing Tables 4 and 5, the model size and computational time for the discrete-time MILP 

models increase exponentially with the number of tasks, resulting in poor scalability for multi-

crane scheduling problems. The continuous-time MILP models are not applicable for multi-crane 

cases, as they fail to prevent crane interference. Among the three approaches, CP models perform 

the best, completing the optimization of two cranes handling 8 tasks in just 1.46 seconds. In 

summary, for multi-crane scheduling problems, CP models perform much better than discrete-time 

MILP models, while continuous-time MILP models are not applicable. 

Table 4. Solver information for discrete-time MILP, continuous-time MILP, and CP models for one cell in Example 

1.2. 

  Discrete-time MILP Continuous-time MILP Constraint programming (CP) 

Discrete variables 806 

Not applicable 

1,499 

Continuous variables 2 0 

Constraints 275,826 2,801 

LP relaxation (min) 0.17 N/A 

Objective value (min) 12 12 

CPU time (s) 80.06 0.50 

Table 5. Model information for discrete-time MILP, continuous-time MILP, and CP models for two cells in Example 

1.2. 

  Discrete-time MILP Continuous-time MILP Constraint programming (CP) 

Discrete variables 1,302 

Not applicable 

5,566 

Continuous variables 2 0 

Constraints 1,249,202 2,680 

LP relaxation 0.17 min N/A 

Objective value 22 min 22 min 

CPU time 2.96 h 1.46 s 
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The results from example 1.1 and example 1.2 indicate that CP models are preferable for both 

single- and multi- crane scheduling problems. In the next case where we have a combination of 

single- and multi- crane scheduling problems, we apply CP models for the optimization. 

7.3. Middle-scale examples 

Example 2.1: Next, we consider a middle-scale example for a combined area with one crane in 

block 1 and two cranes in block 2, considering the conflict in the use of the machine between 

blocks as seen in Fig.16. The number of cells in each block is increased to four, conducting anode 

operations (as shown in Section 4.2), with a total of 32 tasks. Crane 1 can operate independently, 

while crane 2 and crane 3 must keep a safety distance of 1 meter between each other. Cells in block 

1 and block 2 need to share the same stripping machine, and the stripping machine only has one 

slot to process the steel sheet with copper. Hence, non-conflict constraints must be implemented 

in this problem. We assume that once the crane places the item, the machine begins processing 

immediately, with no time delay in between. However, since the stripping machine can handle only 

one task at a time, a crane carrying a steel sheet with copper must wait above the machine if the 

machine is operating and can only proceed with unloading once the current task with the machine 

is completed. Based on actual operating procedures, block 1 and 2 begin their operations 

simultaneously. Therefore, the objective value is defined as the sum of completion times across 

both blocks. The minimum total completion time is identical to the minimum inactive time for 

cells. To solve this problem, we apply the constraint programming (CP) model in this example.  

 

Fig.16. Crane scheduling diagram for example 2.1 and 2.2. 

Fig.17 (a) and (b) illustrate the positions of the three cranes during operation. Crane 1 in block 1 

operates independently, while crane 2 is positioned to the left of crane 3 in block 2. In this example, 

more focus is placed on the task schedules and the allocation of the stripping machine. In Fig.17 

(c), the top section shows the task sequence for cells in block 1. The middle section illustrates the 

use of the stripping machine, indicating the assigned time slots and the corresponding cell 

operations from each block. The bottom section presents the crane assignments and task sequence 

for cells in block 2. The arrows in Fig.17 (c) represent the start time for the use of the machine. 

For example, the stripping machine will be in use after the delivery of the spent steel sheet, which 

is the end of step 1 in both cathode and anode operations. Therefore, after the end of the delivery 
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in step 1 for each cell, the machine spends 3 minutes processing it. In Fig.17 (c), it is shown that 

the stripping machine is used alternatively by blocks without conflicts. After optimization, the four 

cells in block 1 take 50 minutes, and the four cells in block 2 take 30 minutes, resulting in a total 

completion time of 80 minutes as the objective value.  

 

 

Fig.17. a) Time-position figure of crane 1 in block 1, b) Time-position figure of crane 2 and 3 in 

block 2, c) Time-task figures for all three cranes and the corresponding allocation for the use of 

the stripping machine. 

This CP model has about 12,500 variables and 28,500 constraints, with a CPU time of 18.18 

seconds as seen in instance 4 of Table 6. It is effective to take less than 20 seconds for the 

optimization of 4 cells with 24 tasks, under the operations of 3 cranes and 1 shared machine. 

However, when addressing larger problems, for example, increasing the number of cells per block 

to five, shown in instance 5 in Table 6, the computational time increases to more than 23 minutes.  

Table 6 shows the results for instances in which each block contains from 1 to 5 cells, where B1 

and B2 represent block 1 and 2, and 1-5 A means 1 to 5 cells with anode operations. As shown in 

the table, the average processing time per cell decreases as more cells are included in the 

optimization. This is because considering more cells increases the potential possibilities for the 

combinations of steps to reduce the total completion time. However, the CPU time grows 

exponentially with the number of cells as seen in Fig.18. To make the model computationally 

efficient in a large-scale problem, in the next sub-example 2.2, we propose a machine-based 

decomposition strategy and evaluate its performance by comparing it to the optimal solution 

obtained from a single full-scale model in example 2.1. 
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Table 6: Model information for the CP model in Example 2.1. 

Instance Cells Variables Constraints Block 1 (min) Block (min) Objective (min) Time per cell (min) CPU time (s) 

1 
B1 1A 

B2 1A 
3,430 7,012 14 10 24 12 0.87 

2 
B1 2A 

B2 2A 
6,218 13,687 26 18 44 11 1.63 

3 
B1 3A 

B2 3A 
9,265 20,848 38 24 62 10.34 3.43 

4 
B1 4A 

B2 4A 
12,571 28,495 50 30 80 10 18.17 

5 
B1 5A 

B2 5A 
16,136 36,628 62 36 98 9.8 1404.44 

 

 

Fig.18. Computational times for different instances 

Before introducing the decomposition method, we first use the optimal results as a reference. As 

shown in Fig.19, at most 2 cells in both block 1 and block 2 operate simultaneously. This implies 

that if additional cells are included in the optimization, the extra cells will not participate in 

operations. 

 

Fig.19. Operation times for cells in example 2.1 in a) block 1, b) block 2. 

Example 2.2: After obtaining the optimal solution, we apply the decomposition method to the 

previous medium-size example to evaluate the performance of this solution strategy.  
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Fig.20. Decomposition strategy as example 2.2. 

Fig.20 illustrates the iterations of the optimization process. As shown in the optimal solution in 

Fig.19, a maximum of 2 cells in blocks 1 and 2 are operated simultaneously. Based on this, example 

2.2 applies the same upper limit when applying the decomposition strategy. As a result, the 

objective value through decomposition is consistent with that of the full-scale optimization as 80 

minutes. The accumulated CPU time after decomposition is 4.81 seconds (Table 7), which is 

shorter than 18.17 seconds (Table 6 instance 4) for solving the full-size model. The advantage of 

the machine-based decomposition strategy is that it reduces the CPU time growth from exponential 

to linear (Fig.21). Another advantage is its greater flexibility in application. If crane operations are 

interrupted due to unexpected issues, the model can resume scheduling by inputting the current 

initial conditions for cranes and tasks. One possible limitation of this decomposition strategy is the 

difficulty in determining the maximum number of cells that can operate simultaneously. Unlike 

this medium-sized example, where the maximum number is identified from the optimal solution, 

in real-world conditions, this information is typically hard to obtain, which may lead to deviations 

from the true optimal performance. 

Table 7. Solution details for each decomposition iteration in Example 2.2. 

Iteration Variables Constraints CPU time (s) Accumulated CPU time (s) 

1 6,218 13,687 1.634 1.63 

2 4,885 10,478 1.203 2.84 

3 3,593 7,328 0.806 3.64 

4 4,885 10,479 0.98 4.62 

5 1,585 2,452 0.184 4.81 
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Fig.21. The accumulated computational times for each iteration 

7.4. Large-scale examples 

Finally, we consider large examples corresponding to real-word problems, which are described in 

the supplementary material and which show that a problem with 32 cells can be solved in less than 

one minute.  

8. Conclusions 

In this paper, we formulate and compare the performance of discrete-time MILP, continuous-time 

MILP, and CP models in both single- and multi-crane scheduling problems, considering time and 

space constraints including sequence of tasks, arrangement of cranes, non-interfering movements. 

As a result, for single-crane scheduling problems, the continuous-time MILP and the CP models 

perform better than the discrete-time MILP model. For multi-crane scheduling problems, the CP 

model outperforms the discrete-time MILP model, while the continuous-time MILP model is not 

applicable due to the failure in avoiding crane interference. In summary, the CP model is efficient 

in both single- and multi- crane scheduling problems. 

To make it more efficient to solve large-scale problems, we propose a machine-based 

decomposition strategy for the CP model. It turns the computational time from exponential growth 

to linear growth with the increasing number of cells and tasks. Furthermore, it offers greater 

flexibility. In the condition of unexpected disruptions, the positions of cranes and the status of 

tasks can be recorded and updated, enabling re-optimization based on the latest system state. 

The results of real-world case studies demonstrate the effectiveness of the proposed solution 

strategy. Given 32 cells with 128 tasks, it takes 34.02 seconds with 24 iterations to achieve an 

objective value of total completion time of 340 minutes. 

While this work provides a useful optimization strategy for crane scheduling problems in 

tankhouse systems, it does not take into consideration uncertainties such as crane breakdowns and 
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machine shutdowns, as well as human factors, which could affect the cell cleaning times. This 

framework can be further expanded by incorporating stochastic programming techniques to 

account for operational uncertainties, thus making the solutions closer to real-world conditions. In 

addition, it would be interesting to explore the integration of energy consumption models into this 

crane scheduling framework, optimizing not only operational efficiency but also energy use. 

Supplementary materials 

Supplementary material associated with this article can be found in the attached document. 
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